Manganese Treatment & Pressure Filter Optimization

> IL RWA Rockford, IL Wednesday, October 12, 2022

Jim Groose jim.groose@watersurplus.co

m

Manganese (Mn)

Health & Aesthetic Issues Limits and Regulation

Removal Mechanisms

Treatment Technologies

Filter Operation & Maintenance

Manganese (Mn) is a naturally occurring element

- Ranked 12th in earths crust (0.1%)
- 100+ minerals- Sulfides, oxides, carbonates, silicates, phosphates, borates

18.5 million tons of Mn are mined annually

- 1. South Africa- 33.5%
- 2. Australia 15%
- 3. China
- 4. Gabon
- 5. Brazil
- 6. India
- 7. Malaysia
- 8. Ukraine
- 9. Kazakistan
- 10.Ghana

(List from 2020 article in NS Energy)

Nodules on the sea floor can contain up to ~30% Mn

https://worldoceanreview.com/en/wor-3/mineral-resources/manganesenodules/

Almost 90% of Mn mined is used in production of steel

• Other uses

- Batteries
- Drink cans
- Rubber additive
- Glass
- Fungicide
- Fertilizers
- Ceramics
- Fireworks
- Food supplement

Manganese (Mn) is an essential nutrient

1

3 oz = 5.8 mg

SOURCE NATURALS

PORTS ENERGY PRODUC

2 mg

Manganese (Mn) is an essential nutrient

- Recommended Adequate Intake (AI) values (mg/day) *
 - Infants, <1 year: 0.003-0.06
 - Children: 1.2-1.5
 - Preteens/teens: 1.9-2.2 (boys), 1.6 (girls)
 - Adults: 1.8-2.3
 - Tolerable upper intake <u>level = 11</u>

3 oz = 5.8 mg

SOURCE NATURALS

*determined by the Food & Nutrition Board of the Institute of Medicine

cup = 2.5 mg 1.5 mg

2 mg

High levels of Mn can cause health issues

• Manganism

- From inhalation
- Similar to Parkinson's
 - Motor skill decline
 - Gait disturbances
 - Speech impairment

University of British Columbia: https://wiki.ubc.ca/SPPH381B/TermProject/ Alkaline_battery-

_Samin/Granulation/Neurobehavioral_dysfun ctions, called Chronic manganese poisonin

Exposure to Mn in drinking water can cause more subtle effects

Research Children's Health

Intellectual Impairment in School-Age Children Exposed to Manganese from Drinking Water

Maryse F. Bouchard,^{1,2} Sébastien Sauvé,³ Benoit Barbeau,⁴ Melissa Legrand,⁵ Marie-Ève Brodeur,¹ Thérèse Bouffard,⁶ Elyse Limoges,⁷ David C. Bellinger,⁸ and Donna Mergler¹

¹Centre for Interdisciplinary Studies in Biology, Health, Society and Environment (CINBIOSE), Université du Québec à Montréal, Montreal, Québec, Canada; ²CHU Sainte-Justine Research Center, Université de Montréal, Montreal, Québec, Canada; ³Department of Chemistry, Université de Montréal, Montreal, Québec, Canada; ⁴Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montreal, Québec, Canada; ⁵Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada; ⁶Department of Psychology, Université du Québec à Montréal, Montreal, Québec, Canada; ⁷Department of Pedopsychiatry, Centre Hospitalier de l'Université Laval, Québec, Québec, Canada; ⁸Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA

BACKGROUND: Manganese is an essential nutrient, but in excess it can be a potent neurotoxicant. Despite the common occurrence of manganese in groundwater, the risks associated with this source

manganese intoxication from water containing > 1,000 µg manganese/L, one presenting with attention and memory impairments (Woolf

- Over 6 pt difference in IQ (Bouchard et al. 2011)
- Decrease memory, attention, and motor skills (Olhote et al. 2014)
- High blood and high hair Mn conc. associated with lower IQ scores (Haynes et al. 2015)

General conclusions about high Mn levels from Canada Health:

- The CNS is the primary target of Mn toxicity
- Elderly and children most susceptible
- Infants and children may experience:
 - Changes in behavior
 - lower IQ and test scores
 - Impaired reading ability
 - Speech and memory difficulties
 - Lack of coordination

In 2019, Canada set more strict limits on Mn

- Maximum Acceptable Concentration (MAC) = 0.12 mg/L
- Aesthetic Objective (AO) = 0.02 mg

Health Santé Canada Canada

> Guidelines for Canadian Drinking Water Quality

Your health and Votre santé et votre

Guideline Technical Document

Manganese

The Secondary Maximum Contaminant Level (SMCL) for Mn is 0.05 mg/L

- Basically our "Aesthetic Objective"
 - Unpleasant taste and color
 - Costly problems to water distribution systems

https://www.wateronline.com/doc/th e-hidden-dangers-of-manganese-indrinking-water-0001

https://tataandhoward.com/2017 /01/importance-treatingmanganese-drinking-water/

https://www.safewater.org/operationwater-drop-listings/2016/11/13/manganeseanalysis-for-high-school-operation-waterdrop

Is regulation coming to US?

Long, slow process
CCL → RD → MCL
On list for potential regulation

IL-EPA Manganese Requirements

Drinking Water Illinois State MCL

Requiries Treatment if Mn>0.15 mg/L Because of Health Concerns

Removal Mechanisms vs Technologies

Treatment

Removal Mechanisms vs Technologies

Treatment

- Biological uptake
- Ion exchange
- Precipitation
- Adsorption

- Coagulation-filtration
- Membrane filtration
- Lime softening
- Biological filtration
- Ion exchange
- Oxidation/precipitation/filt ration
- Adsorptive treatment
 - GAC and catalytic oxide media

Biological uptake/filtration

- Promote growth of certain bacteria
 - Sand, gravel, anthracite, GAC
- No or very little chemical addition required
 - Nutrient feed may be needed
- Specific conditions are required
 - Start up period
 - Living things are picky
 - Fe & Mn removed in two separate stages

https://www.cell.com/trends/biotechnology/fulltext/S0167 -7799(08)00286-2?code=cell-site

Ion Exchange

- Performance based on raw water quality and target effluent concentrations
- High TDS residuals
- 7 gpm/ft² with 6-8 gpm/ft² backwash

Precipitation (via supersaturation or oxidation)

High redox, high pH = water
oxidized
Low redox, low pH = water
reduced

This is traditional treatment! Oxidation \rightarrow precipitation \rightarrow filtration

Eh-pH diagram describing the stability of solid ("c") and aqueous phases of Mn as a function of redox potential and pH, at 25 C and latm

Comparing oxidants for Traditional Mn

Oxygen (aeration)
Ozone
Chlorine
Potassium permanganate
Chlorine dioxide

Comparing oxidants for Traditional Mn

	Oxidant Required per mg/L Mn	Oxidation Reaction Time per mg/L Mn	Benefits & Drawbacks
Oxygen (aeration)	0.29	80 minutes to days	No chemical use/easy to use, weak, may require detention, \$\$, low loading rates
Ozone	0.67	< 5 min	Strong, tricky to operate, \$\$\$
Chlorine	1.28	15 minutes to 12 hrs	Easy, safe, common disinfectant, weak, may require detention
Potassium permanganate	1.92	<7 min	Strong, messy, undesirable to work with
Chlorine dioxide	2.4	<5 min	Strong, requires additional safety considerations, \$\$

Compare Mn to Fe oxidation

	Oxidant	Required	Oxidation Reaction Time			
	per mg/L Fe	per mg/L Mn	per mg/L Fe	per mg/L Mn		
Oxygen (aeration)	0.14	0.29	<10 min to 4 hr	80 minutes to days		
Ozone	0.43	0.67	< 1 min	< 5 min		
Chlorine	0.63	1.28	Instantaneous to 1 hr	15 minutes to 12 hrs		
Potassium permanganate	0.94	1.92	<5 min	<7 min		
Chlorine dioxide	1.2	2.4	<5 min	<5 min		

Comparing oxidants:

Treatment Technology	Benefits	Drawbacks
Aeration, Filtration	•No chemical use •Easy to operate	 Entrained air can interfere with filtration if not broken May require breaking head and repumping Not effective for complexes with organic material Low filter loading rates for effective removal High capital cost
Chlorination, Filtration	•Chlorine often used for disinfection and present at treatment plant, Easy to operate	May require pH adjustmentLow filter loading rates for effective removalHigh capital cost
Ozone, Filtration	•Strong oxidant, requires little reaction time	 May oxidize manganese to permanganate May oxidize manganese dioxide-containing media to permanganate Difficult to operate High capital and operations and maintenance costs
Chlorine Dioxide, Filtration	Effective for iron complexed with organic materialNo trihalomethane formation	 Generated on site with variety of chemicals Requires careful operation and maintenance Chlorite is a by-product High capital cost
Potassium permanganate, Filtration	Strong oxidant, requires short reaction timesCan reform manganese dioxide coating on media	•Causes staining if spilled •May be overfed, resulting in pink or purple water

Adsorption: contaminants removed by sorption onto media surfaces

Adsorption: contaminants removed by sorption onto media surfaces

- Iron oxides- arsenic
- GAC- inorganic metals, organic compounds, radionuclides
- Manganese oxides- iron, manganese, arsenic, radium, H₂S
 - Oxides (negatively charged) adsorb ions to surface of particle
 - Evolution: Greensand → fusion-bonded coating → Pyrolusite (MnO₂)
 - Reaction is very fast! Key for Mn

Adsorptive (Catalytic) Filtration Allows for High Loading Rates

- >2x the typical $3-4 \text{ gpm/ft}^2$ (sand/anthracite)
- Smaller filters, smaller building
- Eliminate KMnO₄, detention basin, booster pump(s)
- Uses sodium hypochlorite -current common disinfectant
- Longer media life 20+ years for pyrolusite
- Less backwash waste

Compare These 400 gpm Plants

a) Traditional media system, 3.14 gpm/ft²

- Eight (8) 54" diameter tanks
- 19,120 gallons bw waste (@ 15 gpm/ft² for 10 minutes)
- b) Pyrolusite media system, 6.29 gpm/ft²
 - Four (4) 54" diameter tanks
 - 7,960 gallons bw waste (@ 25 gpm/ft² for 5 minutes)

Backwash

Finished water → Storage/Distribut ion

Backwash Rate

Frequency

Finished water → Storage/Distribut ion Chemistry Quality target

Chemical feed(s)

dose

Raw Water Chemistry Rate

> Rinse/filt er to waste Buration

Backwash

Rate Duration Frequency

► Finished water → Storage/Distribut ion_{Chemistry}

- Chemical feed(s)

dose

Chemical feed(s)

dose

Keep a filter log

3.3 Filter Log Sheet

FILTER MODEL NO:

NAME OF COMPANY:

SERIAL NO:

PERIOD OF THIS SHEET:

NOTE: Please record all calibrations of instruments or other occurrences related to this system.

DATE	, 							\square
TIME	+ +							\square
UNIT IN SERVICE	1							\square
INLET PRESSURE (psi or bar)	1							\square
OUTLET PRESSURE (psi or bar)	1							\square
DIFFERENTIAL PRESSURE (<i>psi or bar</i>)								
	'							
FLOW RATE (gpm or lpm)								
WATER TEMP (deg F or C)								
INLET CHLORINE (ORP in mV)	1							
OUTLET CHLORINE (OPR in mV)	1							\square
INLET IRON (<i>Fe in mg/l</i>)	1							\square
OUTLET IRON (<i>Fe in mg/l</i>)	1							\square
TOTALIZED (gallons or liters)	1							\square
*BACKWASH INITIATED								
OPERATOR'S INITIALS	1							\square
Reference the Troubleshooting Guide where trends or differences are noted. This is a template; make copies as necessary.						-		
NOTES: * BACKWASH REQUIRED- MANUAL if 10-15 psi or .7-1BAR DP increase, TIME OR VOLUME (TOTALIZED)								

- Most backwash based on time, pressure differential, or gallons throughput
 - Consider duration, frequency, rate, bed expansion, rinse to waste
 - Air scour

• When do you backwash?

• How effective is your backwash?

Backwash Time (minutes)

• Do you include a rinse/filter-to-waste step?

Monitor Measurables:

• Raw and effluent water quality

• Chem feed systems

Inspection Focus:

- Measure freeboard, replace gaskets
- Calibrate Chem feeds, instruments, analyzers
- Photograph media surface, collect sample for lab analysis
- Review BW duration, frequency, rate set points
- Monitor complete backwash monthly, listen
- Drain and inspect tank underdrains

• Inspect filters every 3-5 years... or as needed.

In summary

- Mn is difficult to remove, catalytic media technology of choice
- Understand your system and removal mechanism(s)
- Monitor your system and make adjustments
- The more data you have the better
- Questions?

Loves Park, Illinois 61111 www.WaterSurplus.com Jim Groose jim.groose@watersurplus.co